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ABSTRACT
The Multimodal Emotion Recognition (MER 2023) challenge aims
to recognize emotion with audio, language, and visual signals, facil-
itating innovative technologies of affective computing. This paper
presents our submission approach on the Semi-Supervised Learning
Sub-Challenge (MER-SEMI). First, with large-scale unlabeled emo-
tional videos, we train both image-based and video-based Masked
Autoencoders to extract visual features, which termed as expression
MAE (expMAE) for simplicity. The expMAE features are found to be
largely complementary with other official baseline features. Second,
since there is only a few labeled data, we use a classifier to generate
pseudo labels for unlabeled videos which have high confidence for
a certain category. In addition, we also explore several advanced
large models for cross-feature extraction like CLIP, and apply fac-
torized bilinear pooling (FBP) for multimodal feature fusion. Our
methods finally achieved 88.55% in F1 score on MER-SEMI, ranking
second place among all participating teams.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Human-
centered computing → HCI design and evaluation methods.

KEYWORDS
Multimodal Emotion Recognition, Semi-Supervised Learning,Masked
Autoencoder

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612840

ACM Reference Format:
Zebang Cheng, Yuxiang Lin, Zhaoru Chen, Xiang Li, Shuyi Mao, Fan Zhang,
Daijun Ding, Bowen Zhang, and Xiaojiang Peng. 2023. Semi-Supervised
Multimodal Emotion Recognition with Expression MAE. In Proceedings of
the 31st ACM International Conference on Multimedia (MM ’23), October 29-
November 3, 2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3581783.3612840

1 INTRODUCTION
Multimodal emotion recognition (MER) has garnered significant
attention in recent years due to its potential applications in var-
ious domains, including human-computer interaction [12], AI in
healthcare [10], and education [8]. Researchers have made notable
progress in analyzing facial expressions and visual cues in videos,
leveraging techniques such as deep learning and multimodal fusion
[1, 3, 13]. MER research typically centers on video data, which is
dissected into three modalities. The acoustic modality encompasses
voice, speech, and audio. HuBERT [7] introduces a self-supervised
approach with an unsupervised clustering step, addressing prob-
lems in the acoustic field throughmasked prediction of hidden units.
The lexical modality extracted emotional information through se-
mantic and contextual analysis of the spoken words from the narra-
tion in video clips [5]. MacBERT [4] mitigates the gap between the
pre-training and fine-tuning stages by masking a word with a simi-
lar word. The visual modality contains facial and body language
cues that may indicate emotions. DEFR [17] presents a dynamic
facial expression recognition transformer, featuring a convolutional
spatial transformer and a temporal transformer. These enable robust
spatial and temporal facial feature extraction. However, a challenge
persists in the effective integration of these multimodal inputs,
which is crucial for achieving accurate emotion recognition.

In response to these prevailing challenges, the ACM MM un-
veiled MER2023 [9]. The MER-SEMI sub-challenge introduces a
dataset comprising a large volume of unlabeled videos encourag-
ing the application of semi-supervised learning for enhanced MER.
However, the brevity of these video clips and skewed label distri-
bution further compound the challenge of accurately extracting
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Figure 1: Illustration of the pipeline of our model. (a) Labeled input. (b) Unlabeled input. (c) Feature extraction using multi-
modality.

emotional context. In this paper, we present our participation in this
challenge by cross-features extraction, a semi-supervised training
strategy. An overview of our pipeline is depicted in Figure 1.

In the visual modality, where Masked Autoencoders [6] (MAE)
have been showing promising results by pre-training on a large
number of unlabeled images. However, MAE is limited when deal-
ing with videos, primarily due to their inability to extract temporal
information from the various frames. Furthermore, the videoMAE
[14] employs a more appropriate pre-train method, which masks
the visual information extend on the video timeline, learning the
temporal information. To combine the advantages of static and dy-
namic features as mentioned above, we train the image-based and
video-based MAE from scratch using the unlabeled data, termed ex-
pression MAE (expMAE). The result has shown expMAE outperfor-
mance in MER compared to single MAE. In terms of multi-modality,
we also found that expMAE complements the other official baseline
features effectively.

Based on the extracted features mentioned above, we construct
an initial model to recognize basic emotions. However, given the
scarcity of labeled data and the imbalanced distribution within
the training set, we draw inspiration from the classic pseudo-label
semi-supervised method [2]. Following this approach, we generate
pseudo labels for the unlabeled data and incorporate them into the
training set. Besides, we explored several advanced large models
for cross-feature extraction and apply factorized bilinear pooling
(FBP) [19] for multimodal feature fusion. Recognizing the relatively
weaker performance of the lexical modality, we employed visual-
text and audio-text cross-feature models, including CLIP [11] and
Tacotron[16]. Overall, our method achieved an 88.55% F1 score on
MER-SEMI.

2 METHODS
This section focuses on our semi-supervised MER method. Initially,
we extract features from various modalities using a small labeled

training set. We then perform feature fusion and train a naive emo-
tion classifier. Subsequently, we leverage a dataset of over 70,000
unlabeled samples to generate pseudo-labels through the trained
classifier. To address the class imbalance, we employ a strategy
that involves selecting a subset of videos with added pseudo-labels
and incorporating them into the training set for joint training. The
overall framework is shown in Figure 1.

2.1 Expression Masked Autoencoders
MAE containing an Encoder-Decoder structure, are a type of self-
supervised learners for computer vision. It segments the input
image into patches, with a randomized 75% masking, then the
unobscured patches are processed through the Encoder to derive a
condensed representation of the original input. Decoder capitalizes
on the encoder’s output to reconstruct the source image. Once the
encoder has been trained, it can be directly reused for downstream
tasks. This flexibility enables the formation of various network
configurations to meet specific requirements. In dealing with MER-
SEMI challenge, we select 16 frames from the video of the dataset,
and in each training epoch, we randomly chose one of them to train
the model, while in the inference part, we use all of the 16 frames
and average the output vectors.

The MAE model’s limitations become apparent as it can only
glean static features, not accommodating changes in facial expres-
sions during the progression of a video. To tackle this issue, Video-
MAE [14] is designed to process video inputs and apply a tube
masking strategy to prevent inadvertent feature information leak-
age. This technique effectively derives dynamic visual features that
include temporal information directly from the video.

To further accentuate the expression information within the
video, we train expMAE, as mentioned above, to better suit the
specific task of emotion recognition. In addition, we applied a pre-
processing step involving discarding the background and centering
the human face, which allows us to extract the most pertinent and
expressive facial features.
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Figure 2: Illustration of the Fusion block in Figure 1.

2.2 Multimodal Fusion for Classification
For acoustic and lexical modalities that also contain emotional in-
formation, we first leverage the official baseline features provided
by HuBERT and MacBERT. To address the suboptimal performance
of the lexical modality, we creatively explore the role of cross-
modal features in MER tasks. The Contrastive Language-Image
Pre-Training (CLIP) model [11] is selected to handle visual-text
features, while a variant of Tacotron [16] is employed for audio-
text features. CLIP was pre-trained on a vast text-image corpus, it
employs contrastive learning to align textual and image represen-
tations in a shared embedding space. Tacotron was a pre-trained
speech synthesis model to integrate text and speech features. These
cross-modality features enhance the learning capabilities of the
classifier, allowing it to better comprehend the transitions between
different modalities.

After collecting features from different modalities, we apply the
factorized bilinear pooling (FBP) module [19] to fuse each contex-
tually related feature, generating the fused features (as shown in
Figure 2). We then follow the official approach of training with the
attention module.

2.3 Semi-Supervised Training Strategy
In the proceedings, we observed that the class in label data was
skewed, making some classes hard to learn in our model (Figure
3). To address this issue, we employed a semi-supervised strategy
to balance the data. The traditional data augmentation techniques
such as over-sampling and under-samplingmethods are not suitable
for this task, as they are prone to overfitting and information loss.
we draw inspiration from the classic pseudo-label semi-supervised
method [2] by using unlabeled data with pseudo-label.

Specifically, we leverage the pseudo-labeled samples generated
from the unlabeled dataset. From the test set, we selected the sam-
ples predicted as the surprise class with model confidence (calcu-
lated from the output vectors from the softmax function) of 0.8
or higher, as they were likely to have more distinct and reliable
features. We followed a similar approach for the worried and sad
classes. Ultimately, we included these selected pseudo-labeled sam-
ples, along with the original labeled training set, resulting in a final
training set from 3373 increase to 4138 samples.

The incorporation of the pseudo-labeled samples with more
discernible features aimed to provide the model with a better rep-
resentation of the underrepresented classes, finally improving its
ability to generalize and make accurate predictions.

Figure 3: The distributions of the confidence scores from the
initial model, from left to right, top to bottom are happy,
angry, neutral, sad, worried, and surprise, shows that model
is hard to predict the class of surprise, worried, with a lower
confidence score.

Table 1: Unimodal results of the baseline.

Feature Train&Val
𝑚𝑒𝑡𝑟𝑖𝑐𝑒 (↑) 𝑚𝑒𝑡𝑟𝑖𝑐𝑣 (↓) 𝑚𝑒𝑡𝑟𝑖𝑐 (↑)

Acoustic Modality
HuBERT-base[7] 60.72 1.53 0.22
HuBERT-large[7] 65.67 1.27 0.34

Lexical Modality
MacBERT-base[4] 40.96 2.42 -0.19
MacBERT-large[4] 42.62 2.39 -0.17

Visual Modality
MANet-RAFDB[18] 57.48 1.38 0.23

DFER[17] 43.63 2.02 -0.06
MAE [6] 60.01 1.42 0.25

VideoMAE [14] 61.98 1.33 0.28
expMAE 62.56 1.29 0.30

Cross Modality
Tacotron-Var [16] 44.01 2.44 -0.17

CLIP [11] 60.99 1.26 0.29

3 EXPERIMENTS AND RESULTS
In this section, we present the experiments conducted and results.
We process video into three modalities and two cross-modalities,
and experiments were carried out on both of it. Then we investi-
gated different strategies to determine the classifier for emotion
recognition tasks. Ultimately, we compare our semi-supervised
strategy with different data augmentation techniques.

For emotion classification𝑚𝑒𝑡𝑟𝑖𝑐𝑒 is the average F1 score across
six classes, and for emotion’s valance regression, 𝑚𝑒𝑡𝑟𝑖𝑐𝑣 is the
mean square error. The combined metric is computed as𝑚𝑒𝑡𝑟𝑖𝑐 =

𝑚𝑒𝑡𝑟𝑖𝑐𝑒 − 0.25 ×𝑚𝑒𝑡𝑟𝑖𝑐𝑣 . Although in MER-SEMI,𝑚𝑒𝑡𝑟𝑖𝑐𝑣 is not
computed as a score, we include it as part of our metric to boost
the model’s ability of emotion recognition.

3.1 Unimodal Comparison
For the acoustic and lexical modalities, we utilize HuBERT and
MacBERT respectively, which perform best in the MER2023 paper
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Table 2: Performance of the baseline with uni-modality and
multi-modality, we select acoustic features from HuBERT-
large (HL), lexical features from MacBERT-large (ML), and
visual features from MANet-RAFDB (MR), MAE, Video-
Mae, and expMAE, cross features from CLIP and Tacotron-
variant(T-var)."A", "L", "V" and "C" represents the acoustic,
lexical, visual, and cross modalities, respectively.

A L V C Train&Val
𝑚𝑒𝑡𝑟𝑖𝑐𝑒 (↑) 𝑚𝑒𝑡𝑟𝑖𝑐𝑣 (↓) 𝑚𝑒𝑡𝑟𝑖𝑐 (↑)

Bimodal Results
HL ML — — 67.02 1.16 0.38
HL — MR — 72.92 0.86 0.52
HL — MAE — 71.32 0.89 0.49
HL — VideoMAE — 72.90 0.81 0.52
HL — expMAE — 73.40 0.78 0.53
HL — — CLIP 71.32 0.79 0.51
HL — — T-Var 65.24 1.19 0.35
— ML MR — 61.19 1.28 0.29
— ML MAE — 63.66 1.32 0.30
— ML VideoMAE — 66.70 1.12 0.39
— ML expMAE — 67.13 1.10 0.39
— ML — CLIP 64.14 1.12 0.35
— ML — T-Var 53.64 2.19 -0.01

Trimodal Results
HL ML MR — 73.39 0.87 0.52
HL ML MAE — 73.8 0.92 0.49
HL ML VideoMAE — 72.42 0.78 0.53
HL ML expMAE — 74.52 0.76 0.55

Multi Results
HL ML MAE T-Var 73.07 0.84 0.518
HL ML VideoMAE T-Var 74.52 0.77 0.552
HL ML expMAE T-Var 74.65 0.76 0.556
HL ML MAE CLIP 72.65 0.89 0.502
HL ML VideoMAE CLIP 74.78 0.74 0.561
HL ML expMAE CLIP 75.01 0.66 0.585

[9]. When dealing with the visual modality, we compare the perfor-
mance withMANet-RAFDB [18], as well as DFER, MAE, VideoMAE,
and expMAE. In the cross-modality, we resort to the use of the CLIP
model and a Tacotron combined with a GE2E Speaker Encoder [15],
namely Tacotron-Var, to effectively extract cross-modal features.
The results of these experiments are presented in Table 1.

Among the visual modality, expMAE significantly perform better
𝑚𝑒𝑡𝑟𝑖𝑐𝑒 and𝑚𝑒𝑡𝑟𝑖𝑐 values than others, while also demonstrating
lower𝑚𝑒𝑡𝑟𝑖𝑐𝑣 values.

3.2 Multimodal Comparison
We carried out experiments on multimodal features. These fea-
tures were derived by leveraging the combined features from visual,
acoustic, lexical, and cross modalities. The results of these experi-
ments are presented in Table 2.

By combining the best unimodal feature extractor, we proceeded
to test various classifiers for emotion recognition tasks. We em-
ployed an ensemble voting Support Vector Machine (SVM) with
Radial Basis Function (RBF) kernels, naive attention, Transformer-
Encoder with 3 and 6 layers, and bilinear sum pooling methods
with FBP module and attention (refer Figure 2). The outcomes of
these varied experiments are presented in Table 3.

Table 3: Comparison of different classifiers.

Classifier Train&Val
𝑚𝑒𝑡𝑟𝑖𝑐𝑒 (↑) 𝑚𝑒𝑡𝑟𝑖𝑐𝑣 (↓) 𝑚𝑒𝑡𝑟𝑖𝑐 (↑)

SVM 61.70 — —
Transformer (3 layers) 73.55 0.89 0.512
Transformer (6 layers) 72.14 0.88 0.499

naive attention 75.01 0.66 0.585
FBP 75.53 0.82 0.550

Table 4: Comparison of semi-supervised strategy, MER-SEMI
shows the test result on the MER-SEMI dataset.

Augmentation Train&Val MER-SEMI
𝑚𝑒𝑡𝑟𝑖𝑐𝑒 (↑) 𝑚𝑒𝑡𝑟𝑖𝑐𝑣 (↓) 𝑚𝑒𝑡𝑟𝑖𝑐 (↑) 𝑚𝑒𝑡𝑟𝑖𝑐𝑒 (↑)

baseline 75.53 0.82 0.550 0.8799
threshold (reliable label) 76.01 0.75 0.570 0.8759
threshold (weak reinforce) 78.10 0.64 0.622 0.8855

3.3 Semi-Supervised Strategy Performance
To mitigate the impact of skewed class distribution on the classi-
fier, we introduced two data augmentation techniques: threshold-
based reliable labeling and threshold-based weak reinforcement.
Using the highest performing method from Section 3.2, we generate
soft pseudo-labels from the unlabeled data. In the reliable labeling
strategy, samples with pseudo-label confidence exceeding 0.8 were
filtered and added to the training set. In contrast, the weak rein-
forcement strategy only added the unbalanced classes, since they
are hard to learn by the model (Figure 3). The outcomes of these
experiments are documented in the following Table 4.

4 CONCLUSION
In our research, we explored multimodal emotion recognition, fo-
cusing on the MER-SEMI challenge of the ACM MM 2023 Grand
Challenge. expMAE proved instrumental in handling this challenge,
effectively extracting both static and dynamic visual expression fea-
tures from videos and largely complementary with other modality
features. Furthermore, we utilized a well-suited semi-supervised
learning strategy to address the limitations posed by limited and
imbalanced training data, resulting in composite features that sig-
nificantly enhanced emotion recognition. Our experiments also
demonstrated the effectiveness of the BPF module across these
modalities.

We would explore two aspects for future direction. Firstly, a
stronger semi-supervised training strategy may be utilized in the
task, such as Multi-view Learning, Network Embedding. Secondly,
it may be interesting to finetune both the encoder (such as expMAE,
MacBERT, HuBERT) and the classifier (such as the fusion module)
together rather than only train on the decoder.
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