Real-time UAV Localization and Tracking in Multi-Weather Conditions using Multispectral Image Analysis

Yuxiang Lin, Xiaojiang Peng, Jiahe Yu, Yan Wu, Wei Chen, Hu Liu

Email: yx.lin2@siat.ac.cn

INTRODUCTION

Unmanned Aerial Vehicles (UAV), also known as drones, have become increasingly popular due to their low cost, ease of operation, and ability to capture high-quality images.

➤ However, UAV have been known to interfere with the operations of airports and other critical infrastructure, putting lives and property at risk.

➤ UAV were used as weapons in the Russo Ukrainian War to strike the ground.

Methods:

- Radar-based Method: Measuring their position, velocity, acceleration, and direction.
- > Shortage: Affected by interference from other sources of radio waves and may be expensive and complex to install and maintain.
- > Acoustic-based Method: Using microphones to detect the sound of the UAV.
- > Shortage: Has a limited range and may not be able to distinguish between different UAV of the same model.

INTRODUCTION

Visual tracking methods: highly accurate and cost-effective.

Visual tracking has the outstanding advantage of highly accurate detection, especially for UAV details. However, it may not perform well in low-visibility conditions, such as fog or darkness.

In this paper,

- we present a novel approach for robust UAV localization and tracking using Multispectral Image Analysis (RGB and Thermal infrared images).
- ➤ We have created a dataset of multispectral UAV images captured at a resolution of 1920x1080.
- ➤ We combine the You Only Look Once version 5 (YOLOv5) object detection algorithm with the Kernel Correlation Filter Tracking Algorithm (KCF) to develop an approach that is capable of real-time tracking with high accuracy, cost-effectiveness, and the ability to retrack lost targets.

RELATED WORK

YOLOv5 Object Detection algorithm

The YOLOv5 algorithm is a popular one-stage object detection algorithm that offers advantages over previous versions, such as smaller mean weights, shorter training time, and faster detection speed.

Only gain 10 FPS at a CPU device.

RELATED WORK

KCF tracking algorithm

- > The most classic and fast real-time tracking algorithm.
- ➤ Weak in scenarios where the target is moving swiftly, hidden, or undergoing significant transformations.
- Unable to re-track once the object is lost.

Proposed Method

EXPERIMENTS

YOLOv5 Model Training

We have compiled a dataset comprising RGB/thermal infrared images to facilitate the localization and tracking of UAV that may be exploited for surveillance purposes. The dataset includes a total of 3000 images, which are comprised of both RGB and thermal infrared imagery. Furthermore, we have utilized the LabelMe tool to manually annotate the dataset.

EXPERIMENTS

Spectral	CLS Loss	OBJ Loss	BOX Loss	mAP
RGB	0.0004	0.0195	0.02587	0.9873
Infrared	0.0005	0.0197	0.02500	0.9657

Our YOLOv5 model achieved a mean average precision (mAP) of 0.9765 on the validation set, indicating that it is suitable for detecting objects in video streams.

EXPERIMENTS

KCF Algorithm Implementation

Method	Frame Per Second (FPS)
YOLOv5	12.5FPS
Proposed	31FPS

- The first bounding box with 'UAV' label is detected by YOLOv5 algorithm, and the following bounding boxes is tracked by KCF tracking algorithm as proposed above.
- In the experiment, the detection speed using only YOLOv5 was 12.5 FPS, while the detection speed using the
 method proposed in this article was 31 FPS.

CONCLUSIONS

- Our study have the potential to enhance public safety and security by preventing UAV misuse.
- ➤ We highly encourage researchers to explore target detection algorithms that are specifically tailored for infrared images.
- ➤ We advocate for researchers to explore and compare different tracking methods in order to further enhance the accuracy and efficiency of UAV tracking and control.

Thanks for your listening.

Speaker: Yuxiang Lin

