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Abstract— With the increasing availability of unmanned
aerial vehicles (UAV), their potential misuse has become a
serious concern, posing a threat to public security. Existing
tracking methods have limitations in detecting UAV effectively
due to their small size, high speed, complex flight patterns,
and complicated flying background. To address this problem,
we propose a UAV localization and tracking method that uses
multispectral images captured by specific hardware, which
enhances the detection process by allowing for greater visibility
in challenging weather conditions. The proposed method com-
bines the YOLOv5 detection algorithm with the KCF tracking
algorithm to provide a reliable solution for preventing potential
misuse of UAV and enhancing public safety.

Experimental results demonstrate that the proposed method
provides a reliable solution for UAV localization and tracking in
various weather conditions. The method was found to improve
the inference speed compared to a single YOLOv5 model,
demonstrating its potential for real-time UAV tracking and
control. By combining multispectral image analysis, detection
algorithms, and tracking algorithms, the proposed method
provides an effective solution for preventing the potential misuse
of UAV and enhancing public safety. This research presents a
promising direction for future studies on UAV tracking and
control.

Index Terms— UAV, multispectral, real-time, YOLOv5, KCF

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV), also known as drones,

have become increasingly popular due to their low cost,

ease of operation, and ability to capture high-quality images

[1][2]. The use of UAV has been particularly significant in

the field of aerial photography, where high-quality images

and videos can be captured from above. In agriculture,

UAV have been used for crop monitoring and analysis,

allowing farmers to better understand the health of their

crops and make informed decisions. In surveillance, UAV
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can be used for border control, disaster management, and

law enforcement operations. Additionally, UAV have proven

useful in search and rescue missions by providing aerial

views of the affected areas and helping to locate survivors

[3][4][5].

However, there are concerns regarding the misuse of

UAVs, particularly in sensitive areas. UAV have been known

to interfere with the operations of airports and other critical

infrastructure, putting lives and property at risk. Privacy

concerns have also been raised, as UAV can be used for

intrusive surveillance, invading individuals’ personal space

[6][7][8]. To address these concerns, UAV localization and

tracking technology has become critical solution. It involves

monitoring the location and movement of UAV, and is

essential in ensuring the safety and security of individuals

and property.

Various methods have been proposed for tracking Un-

manned Aerial Vehicles. These methods include GPS-based

tracking, radar systems, acoustic tracking, and visual track-

ing. GPS-based tracking relies on satellite signals to deter-

mine the UAV’s location [9]. However, this method may not

be effective if the UAV does not use GPS or uses a different

frequency. Additionally, accessing or manipulating GPS data

of other users may be illegal or unethical.

Radar systems, on the other hand, can detect UAV by

measuring their position, velocity, acceleration, and direction

[10][11]. However, they may be affected by interference from

other sources of radio waves and may be expensive and

complex to install and maintain. Acoustic tracking is another

method that uses microphones to detect the sound of the

UAV. However, this method has a limited range and may not

be able to distinguish between different UAV of the same

model or between UAV and other sources of noise [12][13].

Visual tracking methods, such as using cameras and image

processing techniques, have proven to be highly accurate

and cost-effective. This method can provide high-resolution

images of the UAV and can be used to track the UAV’s

movement. Compared to the aforementioned methods, visual

tracking has the outstanding advantage of highly accurate

detection, especially for UAV details. However, it may not

perform well in low-visibility conditions, such as fog or

darkness.

To address this limitation, we propose a method that

utilizes multispectral images to detect and track UAVs in

multi-weather conditions. Specifically, we use RGB images

to detect UAVs in normal weather conditions and thermal

infrared images to enhance detection in low-visibility condi-

tions such as darkness, clutter, or occlusion. By combining
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these two spectra of images, we can improve the accuracy

and reliability of UAV detection and tracking, making it

suitable for a wide range of applications.

In this paper, we present a novel approach for robust UAV

localization and tracking using Multispectral Image Analysis

(RGB and Thermal infrared images). We have created a

dataset of multispectral UAV images captured at a resolution

of 1920x1080. We combine the You Only Look Once [14]

version 5 (YOLOv5) object detection algorithm with the

Kernel Correlation Filter Tracking Algorithm (KCF) [15] to

develop an approach that is capable of real-time tracking with

high accuracy, cost-effectiveness, and the ability to retrack

lost targets.

Our experimental results demonstrate that our proposed

algorithm is a promising solution to the issue of anti-UAV,

with the potential to significantly improve public safety and

security. In summary, our contributions are as follows:

• We propose a novel method by using multispectral

image analysis to solve the limitation of visual tracking

methods on low-visibility at a single RGB image.

• We have created a dataset consisting of multispectral

UAV images captured at a resolution of 1920x1080.

• We have devised an approach for real-time tracking

that integrates the strengths of both the YOLOv5 object

detection algorithm and the KCF tracking algorithm

while compensating for their respective weaknesses.

Our method is characterized by high precision, afford-

ability, and the capability to recover lost targets.

II. RELATED WORK

A. YOLOv5 Object Detection Algorithm

Object detection is a crucial task in various fields, in-

cluding unmanned aerial vehicle (UAV) pest control. The

YOLOv5 algorithm is a popular one-stage object detection

algorithm that offers advantages over previous versions, such

as smaller mean weights, shorter training time, and faster

detection speed. YOLOv5 uses a detection strategy that

divides the input image into multiple grids, with each grid

responsible for predicting the object’s position if it contains

the target object. The final output is the predicted box with

the highest intersection over union (IoU) with the ground-

truth box.

The YOLOv5 model comprises four parts: the input

end, Backbone, Neck, and Head. The input end includes

Mosaic data augmentation, which randomly scales, crops,

and arranges four images. The Backbone is the feature

extraction part, which includes convolutional layers, C3, and

SPPF structures. The convolutional layers encapsulate three

functions: grouped convolution, batch normalization (BN),

and SiLU activation function. The C3 module simplifies

the previous BottleneckCSP structure, enhancing the model’s

ability to capture features. The SPPF structure replaces the

spatial pyramid pooling (SPP) structure, which increases

the forward and backward computation speeds by about 1.5

times.

The Neck uses the feature pyramid network (FPN) and

path aggregation network (PAN) structure to combine the

conventional FPN layer with the bottom-up feature pyramid,

which fuses the extracted semantic features and position

features. Furthermore, it performs feature fusion between the

backbone layer and the detection layer, allowing the model

to obtain more diverse feature information. The Head outputs

the prediction results.
However, the computational speed of YOLOv5 heavily

depends on the computing units used. For instance, when

using a GPU for inference, the algorithm can achieve a

processing speed of up to 65 frames per second, whereas

using only a CPU results in an inference speed of approxi-

mately 12 frames per second. In UAV pest control tasks, real-

time detection and tracking, as well as detection accuracy,

are equally important. Thus, it is essential to explore and

develop new methods that can achieve real-time detection

and tracking with high accuracy while taking into account

the limited computing resources available.

B. Kernel Correlation Filter Tracking Algorithm
The KCF algorithm trains a filter using ridge regression,

assuming that the training samples are xi. Its objective is

to find a target classifier f (xi) = wT xi, which minimizes the

mean squared error function between the expected output

yi of the filter and the training samples xi. Specifically, the

algorithm seeks to minimize the expression as follow:

min
w ∑

i
( f (xi)− yi)+λ ||w||2. (1)

The symbol λ represents the regularization parameter. The

optimal solution for the weight coefficients of the classifier

w is given by:

w = (XT X +λ I)−1XT y. (2)

In the formula: X is a data matrix, I is an identity matrix,

and y represents the expected target regression matrix.
Using the properties of cyclic matrix and Fourier trans-

form, the solution of Equation (1) in the frequency domain

is:

ŵ =
x̂� ŷ

x̂� x̂∗+λ
. (3)

In the formula: � is the dot product of elements; x̂ is the

discrete Fourier transform of x; x̂∗ is the complex conjugate

of x̂.
In order to solve the nonlinear problem, the kernel function

is introduced into the ridge regression method: k (x,z′) =
〈ϕ(x),ϕ (z′)〉, Then the weight coefficient w is expressed as

w = ∑i α iϕ (xi), Where ϕ(x) refers to mapping the sample

xi to a high-dimensional space.
Finding the optimal value of w is equivalent to finding the

optimal value of α , where α is calculated as follows:

α = (K +λ I)−1y. (4)

In the formula: Where: K is a kernel matrix composed of

elements Ki, j = k (xi,x j).
Based on the loop structure and fast Fourier transform

(FFT), the matrix α equals:

α̂ =
ŷ

k̂
xx
+λ

. (5)
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In the formula: kxx is a vector composed of elements in the

first row of kernel matrix k.

The output response is calculated as:

f (z) = F−1(k̂xz� α̂). (6)

In the formula: F−1 is the inverse discrete Fourier transform;

f (z) is the output response value, and its maximum value is

the position of the target to be tracked.

The KCF target tracking algorithm uses linear interpola-

tion and updates the model with a fixed learning rate. The

update method is as follows:{
α t = (1− γ)α t−1 + γα ′

t
xt = (1− γ)xt−1 + γx′t .

(7)

In the formula: γ is the learning rate; αt , xt and αt−1, xt−1

represent the parameters and target templates of the t frame

and the t −1 frame respectively.

The updated formula of the KCF target tracking algorithm,

as shown in Equation (7), utilizes a fixed learning rate γ .

However, when the target encounters occlusion, the model

update based on the fixed learning rate may lead to the

occluding feature being learned, resulting in the occluding

object being incorrectly identified as the tracking target in

subsequent frames, ultimately leading to tracking failure.

Therefore, the KCF algorithm suffers from a significant

weakness in its assumption that the tracking of a target will

be successful after its initialization. This presumption results

in the updating of the detection model based solely on the

previous frame, which can result in drift in the template due

to improper sampling and model updates in scenarios where

the target is moving swiftly, hidden, or undergoing significant

transformations. The issue is further exemplified in Figure 1.

III. PROPOSED APPROACH

Unmanned aerial vehicles (UAV) are increasingly being

misused for unauthorized surveillance, which poses a sig-

nificant threat to privacy and security. Therefore, there is

a growing need for methods to detect, locate and track

such UAV. However, selecting an appropriate algorithm for

object tracking is challenging due to the trade-off between

accuracy and computational speed. To address this challenge,

we propose a hybrid approach that combines the strengths

of the YOLOv5 and KCF algorithms.

Our proposed approach for UAV localization and tracking

involves the following steps:

1) Read the video frames to be detected: The first step

is to read the multispectral video frames captured by

Fig. 1. The picture shows a sequence of events captured from left to right.
In the first frame, the KCF algorithm is used to lock onto a UAV. However,
in the second frame, a person passes in front of the camera, causing the
UAV to become obscured and lose track.

the sensor. Our system uses both thermal infrared im-

ages and RGB images to detect objects in low-visibility

conditions and normal conditions, respectively.

2) Extract features from the video frames using the
YOLOv5 algorithm and determine the location of
the detection box: We employ the YOLOv5 algorithm

to extract features from each frame of the video

stream. This involves running the YOLOv5 algorithm

on each frame to identify the location of objects in the

frame. We then use the information from the YOLOv5

algorithm to determine the location of the detection

box for each object.

3) Pass the detection box to the KCF algorithm and
initialize the tracker: Once we have determined the

location of the detection box for each UAV in the video

frame, we pass this information to the KCF algorithm.

We use the detection box as the initial location of the

object to be tracked and initialize the KCF tracker.

4) Use the KCF algorithm to track the object in real-
time: With the KCF tracker initialized, we use the

algorithm to track the object in real-time as it moves

through subsequent frames of the video stream. The

KCF algorithm is known for its fast processing speeds,

which allows us to track objects in real-time.

5) Switch the mode to thermal infrared images if low-
visibility conditions are detected: In the event that

low-visibility conditions are detected, we switch the

mode to thermal infrared images to improve object

detection accuracy and repeat step 2 to re-detect the

UAV. We continue tracking objects using the KCF

algorithm and thermal infrared images until normal

visibility is restored.

6) If the KCF algorithm loses track of the object,
repeat step 2: If the KCF algorithm loses track of

the object being tracked, we repeat step 2 to re-detect

the UAV and determine its new location. We then pass

this information back to the KCF tracker to continue

the tracking process.

Overall, our proposed approach combines the high ac-

curacy of the YOLOv5 algorithm with the fast processing

speeds of the KCF algorithm to enable real-time object

tracking in multispectral video streams. Our approach also

includes the ability to switch between thermal infrared and

RGB images, depending on the visibility conditions, to

ensure accurate object detection.

IV. EXPERIMENTS

A. YOLOv5 Model Training
We have compiled a dataset comprising RGB/thermal

infrared images to facilitate the localization and tracking of

UAV that may be exploited for surveillance purposes. The

dataset includes a total of 3000 images, which are comprised

of both RGB and thermal infrared imagery. Furthermore,

we have utilized the LabelMe tool to manually annotate the

dataset.
The PyTorch deep learning framework was employed to

train the YOLOv5 model on the annotated dataset. The model
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Fig. 2. This is a sample of the dataset of RGB (Right) and thermal infrared
images (Left) collected for the purpose of localizing and tracking misused
UAV.

was trained for 100 epochs with a batch size of 128, a

learning rate of 0.01, and the stochastic gradient descent

(SGD) optimizer, using a single NVIDIA V100 graphics

card. To prevent overfitting, early stopping with a patience

of 10 was also implemented.

Fig. 3. Training results of the YOLOv5 model.

Fig. 4. Detection results on the validation set using the YOLOv5 model.

Figure 3 shows the training results of the YOLOv5

model, with the loss decreasing significantly over the training

epochs. The training loss reached a plateau after around

40 epochs, indicating that the model had converged. We

also evaluated the performance of the YOLOv5 model on

a separate validation set, consisting of 300 images that were

not used in the training process. The detection results on the

validation set are shown in Figure 4, which demonstrate that

the YOLOv5 model was able to accurately detect the objects

in the images.

Overall, our YOLOv5 model achieved a mean average

precision (mAP) of 0.9765 on the validation set, indicating

that it is suitable for detecting objects in video streams.

TABLE I

THE YOLOV5 PERFORMANCE AT THE MULTISPECTRAL DATASET.

Spectral CLS Loss OBJ Loss BOX Loss mAP
RGB 0.0004 0.0195 0.02587 0.9873
Infrared 0.0005 0.0197 0.02500 0.9657

B. KCF Algorithm Implementation

The Kernelized Correlation Filter (KCF) algorithm is a

popular object-tracking algorithm due to its efficiency and

effectiveness. In our video tracking system, we use the KCF

algorithm to track the objects of interest after they have been

detected by the YOLOv5 algorithm.

To implement the KCF algorithm, we use the OpenCV

library in Python. Specifically, we initialize the KCF tracker

with the bounding boxes provided by the YOLOv5 algo-

rithm, which serve as the initial positions of the tracked

objects. Once the tracker has been initialized, it updates the

position of the object in each subsequent frame in real-time.

The KCF algorithm is prone to losing track of the object

when it moves too quickly or when it is occluded by other

objects. In such cases, the YOLOv5 algorithm is used to re-

detect the object and provide a new bounding box, which

is then used to re-initialize the KCF tracker. This process is

repeated until the object is successfully tracked.

However, the degree of confidence of KCF algorithm

in the OpenCV-python library is not provided. To address

this limitation, we propose a methodology that involves

monitoring the motion of the bounding box returned by

the KCF algorithm. Specifically, if the target is lost, the

bounding box will appear to be stationary. To address this,

we introduce a patient frame parameter that is set to 5

frames. If the bounding box remains stationary for up to 5

frames, we assume that the KCF algorithm has lost the target

and initiate a re-detection using YOLOv5. Our experimental

results demonstrate that the combination of YOLOv5 and

KCF algorithms yields robust object tracking in real-time

video streams.

Fig. 5. Example of using proposed method to localize and track UAV. The
first bounding box with ’UAV’ label is detected by YOLOv5 algorithm,
and the following bounding boxes is tracked by KCF tracking algorithm as
proposed above.
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TABLE II

EXPERIMENT RESULT OF FRAME PER SECOND WHEN DETECTING.

Method Frame Per Second (FPS)
YOLOv5 12.5FPS
Proposed 31FPS

V. CONCLUSIONS

In conclusion, our study has made substantial contributions

to the field of unmanned aerial vehicle (UAV) localization

and tracking. Firstly, we have produced a high-quality ther-

mal infrared UAV dataset that can be employed for future

research in this domain. Secondly, we have presented a novel

approach that combines both RGB and infrared images to

detect UAV in diverse settings, including low-light, cluttered,

or obscured conditions. This method has demonstrated its

robustness and efficacy, surpassing existing techniques in

tracking accuracy and real-time performance. Lastly, through

the integration of the YOLOv5 object detection algorithm

and the KCF tracking algorithm, we have devised a method

that can track UAV with high accuracy and retrack lost

targets in real-time. These contributions have the potential

to enhance public safety and security by preventing UAV

misuse.

However, we must acknowledge that there exist other

tracking methods that merit investigation. For example, deep

learning-based methods like DeepSORT [16], ByteDance

[17], QDTrack [18] have shown promising results in object

tracking tasks and could be adapted for UAV tracking. Ad-

ditionally, other traditional tracking methods such as Mean

Shift [19], Particle Filter [20] and Kalman Filter [21] may

also be beneficial in different scenarios.

We highly encourage researchers to explore target de-

tection algorithms that are specifically tailored for infrared

images. This is because the loss of detail in infrared images

is much greater than that in RGB images, which means

that algorithms that perform well on RGB images may not

perform well on infrared images. Therefore, it is important

to develop algorithms that are optimized for detecting targets

in infrared images.

Thus, we advocate for researchers to explore and compare

different tracking methods in order to further enhance the

accuracy and efficiency of UAV tracking and control. By

continuously pushing the limits of research in this field, we

can develop more effective and robust solutions that will

strengthen public safety and security.
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